

ASP-M Medium

(McLachlan et al. 1964, Goldman and McCarthy 1978)

This is an artificial enriched seawater medium devised as a general medium for marine macro- and microalgae. It is derived from the earlier ASP Medium series (see Provasoli *et al.* 1957). The TMS-II trace metals solutions are derived from the S1 metals solution of Provasoli and Pintner (1953).

First prepare the stock solutions. To prepare, dissolve the anhydrous salts in 500 mL dH_2O and the hydrous salts in 300 mL dH_2O , and then combine the solutions. Dissolve the Tris base and the glycylglycine, add the indicated quantity of stock solutions and bring the final volume to 1 liter. Autoclave or sterile filter. The pH should be 7.5 at room temperature.

Component	Stock Solution	Quantity	Molar Concentratio n in Final Medium
anhydrous salts			
NaCl		23.38 g	4.0 x 10 ⁻¹ M
KCI		0.75 g	1.0 x 10 ⁻² M
CaCl ₂		1.120 g	1.0 x 10 ⁻² M
NaHCO3		0.168 g	2.0 x 10 ⁻³ M
hydrous salts			
MgSO4 7H2O		4.930 g	2.0 x 10 ⁻² M
MgCl ₂ 4H ₂ O		4.060 g	2.0 x 10 ⁻² M
macronutrients			
NaNO3	85.0 g L ⁻¹ dH ₂ O	1 mL	1.0 x 10 ⁻³ M
NaH2PO4 H2O	13.8 g L ⁻¹ dH ₂ O	1 mL	1.0 x 10 ⁻⁴ M
Na2SiO3 9H2O	56.8 g L ⁻¹ dH ₂ O	1 mL	1.0 x 10 ⁻⁴ M
other components			
Fe-EDTA	84.2 g L ⁻¹ dH ₂ O	100 µL	2.0 x 10 ⁻⁶ M

Tris base		0.606 g	5.0 x 10 ⁻³ M
glycylglycine		0.660 g	5.0 x 10 ⁻³ M
TSM-I solution	(see recipe below)	1 mL	
TSM-II solution	(see recipe below)	1 mL	
S3 vitamin solution	(see recipe below)	1 mL	

Trace Metal Solution - TMS I

McLachlin 1964

Into 900 mL of dH_2O , first dissolve the EDTA and then individually dissolve the metals. Bring the final volume to 1 liter. Refrigerate.

Component	Primary Stock Solution	Quantity	Molar Concentration in Final Medium
EDTA		14.026 g	4.8 x 10 ⁻⁵ M
FeCl₃		0.324 g	2.0 x 10 ⁻⁶ M
H3BO3		24.732 g	4.0 x 10 ⁻⁴ M
MnCl ₂ 4H ₂ O		1.979 g	1.0 x 10⁻⁵ M
ZnSO4 7H2O		10.064 g	3.5 x 10⁻⁵ M
NaMoO4 2H2O		1.210 g	5.0 x 10 ⁻⁶ M
CuSO4 5H2O		0.075 g	3.0 x 10 ⁻⁷ M
CoCl ₂ 6H ₂ O		0.071 g	3.0 x 10 ⁻⁷ M

Trace Metal Solution - TMS-II

McLachlin 1964

These are necessary only for certain marine macrophytes. Into 900 mL of dH₂O, dissolve individually components and bring the final volume to 1 liter. Refrigerate.

C	Component	Primary Stock	Quantity	Molar Concentration in
		Solution		Final Medium
KBr			51.450 g	5.0 x 10 ⁻⁴ M
SrCl2			26.662 g	1.0 x 10 ⁻⁴ M
Ru			0.242 g	2.0 x 10 ⁻⁶ M
Li			0.424 g	1.0 x 10 ⁻⁵ M
I			0.030 g	2.0 x 10 ⁻⁷ M

S3 Vitamin Solution

Provasoli 1963

This is a very complex vitamin solution, and most of the vitamins are unnecessary for the growth of algae. Into 900 mL of dH₂O, dissolve the first four components and then add 1 mL of each primary stock solution. Bring the final volume to 1 liter, filter sterilize and freeze.

Component	Primary Stock Solution	Quantity	Molar Concentration in Final Medium
i-inositol		900.000 mg	5.0 x 10 ⁻⁶ M
thiamine HCl (vit. B1)		168.635 mg	5.0 x 10 ⁻⁷ M
Ca pantethenoate (vit. B₅)		23.830 mg	1.0 x 10 ⁻⁷ M
Nicotinic acid (niacin)		12.310 mg	1.0 x 10 ⁻⁷ M
<i>p</i> -aminobenzoic acid	1.371 g L ⁻¹ dH ₂ O	1 mL	1.0 x 10 ⁻⁸ M
biotin (vit. H)	0.244 g L ⁻¹ dH ₂ O	1 mL	1.0 x 10 ⁻⁹ M
folic acid	0.883 g L ⁻¹ dH ₂ O	1 mL	2.0 x 10 ⁻⁹ M
cyanocobalamin (vit. B12)	1.355 g L⁻¹ dH₂O	1 mL	1.0 x 10 ⁻⁹ M
thymine	0.378 g L ⁻¹ dH ₂ O	1 mL	3.0 x 10 ⁻⁶ M

Goldman, J.C. and McCarthy, J.J. 1978. Steady state growth and ammonium uptake of a fast growing marine diatom. *Limnol. Oceanogr.* **23**: 695-703.

McLachlan, J. 1964. Some considerations of the growth of marine algae in artificial media. *Can. J. Microbiol.* **10**:769-82.

Provasoli, L. 1963. Growing marine seaweeds. pp. 9-17. *In* De Virville, A.D. and Feldmann, J. (eds.) *Proc. 4th Internatl. Seaweed Symp.* Pergamon Press, Oxford.

Provasoli, L., McLaughlin [*sic*], J.J.A. and Droop, M.R. 1957. The development of artificial media for marine algae. *Arch. Mikrobiol.* **25**: 392-428.

Provasoli, L. and Pintner, I.J. 1953. Ecological implications of *in vitro* nutritional requirements of algal flagellates. *Ann. New York Acad. Sci.* **56**: 839-51.